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Abstract

Solid surface stresses are known to behave like the prestress in a prestressed membrane that is perfectly fitted on the
bounding surface of a bulk material. The inclusion of such a surface stress in an otherwise traction-free crack surface
leads to additional loads for the bulk material: a pair of point forces, one at each crack tip, a uniformly distributed
compressive load on the convex side of the crack, and a uniformly distributed tensile load on the concave side. As a
result, the values of the stress intensity factors are altered, and the crack-tip stress fields become ! singular, in addition
to being /2 singular. The severity of the added singularity does not carry any particular physical significance in that
the configurational equilibrium is always an energy condition and never a stress criterion. Indeed, the new configu-
rational equilibrium condition — or fracture criterion — is also dependent on the surface stress as well as the curvature of
the crack. The dependence on curvature becomes more and more pronounced as the radius of curvature becomes
smaller and smaller. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

When an infinite solid, characterized by a shear modulus p and a Poisson’s ratio v, with a circular-arc
crack of radius p and central angle 2¢ is loaded by remote stresses, the total potential energy I may be
written as

II = 1II, + Al (1.1)
where I, is the potential of the solid without the crack. Similarly, the total elastic strain energy U, is
U, = Uy + AU, (1.2)

where Uy is the strain energy of the solid without the crack. Since the solid is load controlled by the remote
stresses, we have
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AIT = —AU, + 4T op¢, (1.3)

where I'j is the surface energy density per unit area, or surface tension. For configurational equilibrium of a
circularly extending crack, we have

1 0AIT
— = 2, =0 1.4
2y 0 0T 2He=0 (1.4)
where
1 0AU;
- L.
is the (strain) energy release rate. Moreover, for plane-elasticity problems,
K+ 1
=3 (K7 +Kqp), (1.6)
where
. — 3—-4v for plane strain (1.7)
1 (3=v)/(1+v) for plane stress, '

and K and K7y are the stress intensity factors (SIF). Condition (1.4) may be referred to as a K-criterion in
that G consists of the sum of the squares of the SIFs and

16,UFO
. 1.8
K+ 1 (18)

The purpose of this paper is to show that in the presence of surface stress, neither Eq. (1.6) nor Eq. (1.8)is a
valid identity.

In general, the surface energy density is a function of the surface deformation (Shuttleworth, 1950;
Herring, 1951; Wu, 1996a,b; Wu et al., 1998). For a linear two-dimensional theory, the surface energy
density I" depends on a single surface strain . Since the surface stress, which is defined as the derivative of I’
with respect to ¢, is known to be of a residual-stress type, the minimum requirement for I' is a linear
function of &, viz.

F(8):F0+208, (19)

K +Ky=Kp =

where X is the surface stress coefficient or surface stress for short. The presence of X on a straight crack
leads to a pair of crack-tip point loads of magnitude 2%,. It was shown by Wu (1999) that, with the in-
clusion of the 2X, forces, the new potential for a straight crack under a mode-I loading implied by

K] = O\ Ta is

K+ 1

All = — 8 (ra’o3, + 4Zg02a) + 4al’. (1.10)
The associated configurational equilibrium condition becomes
2 2
K12+2\/%K17K12C:0:>622\/TE %chf\/%%*'” (111)

It is noted that while the crack-tip point loads do not alter the value of K in any manner, they actually
appear in the configurational equilibrium condition. The situation for curvilinear cracks is even more in-
tricate in that the crack surfaces are now subjected to the normal traction induced by the surface stress. As a
result, the values of K7 and Kj; also depend on Xy. The circular-arc counterpart of Eq. (1.10) is analyzed in
detail in this paper.
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Elastic fields induced by surface stresses have been considered by Andreussi and Gurtin (1977), Dunham
and Gurtin (1977), Murdoch (1976, 1977), and Gurtin and Murdoch (1978). Chuang (1987) first estimated
the nonlinear effects of surface stress on stress intensity factors. Our interest has been in examining the effect
of surface stress on the equilibrium and evolution of configurations. The calculation of generalized con-
figurational forces has therefore been our primary concern. This involves the nonlinear surface chemical
potential (Wu, 1996a,b), the stability of planar surfaces (Wu et al., 1998), and the configurational equi-
librium of voids and cracks (Wu, 1999). In particular, the effect of crack-tip point loads on fracture was
examined in a recent study by Wu and Wang (2000).

2. A circular-arc crack with surface stress
2.1. Formulation

Letx; (i = 1,2,3) be rectangular Cartesian coordinates and e; the associated unit vectors. The associated
cylindrical coordinates (r,0,x;) are defined by x; = r cos 0 and x, = r sin 0. We consider plane elasticity
problems so that the displacements u,, strains ¢,; and stresses 1,5 are functions of xg where Greek subscripts
range from 1 to 2. The deformation of a circular region of radius R containing a circular-arc crack of
central angle 2¢ is considered (Fig. 1a). The crack C is on the circle » = p so that

C:r=p, —¢p<0<+9. (2.1)

It is implicitly assumed that p/R < 1 and tends to zero when the circle is actually infinite.
In terms of the cylindrical coordinates and components the traction condition on » = R is

’L'r,-(R, ()) = Urr(()) = %[(0'22 + 0'11) — (0'22 — ()'1]) COS 20]7 (22)

'L'rg(R, 9) = 0,9(0) = %(0'22 — 611) sin 26, (23)

? G

S 2¢ —>

@ v (b)

Fig. 1. (a) A circular-arc crack in a large circular specimen subjected to remote loading, and (b) the free body of the circular-arc
‘surface’. The load on the bulk is the reverse of that shown in (b).
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where o; and a,, are the given constants. The above conditions are setup for the convenience that, as R
becomes infinite, the constant stresses at infinity are

Tit =011, T2 = 022, 712 =0. (2~4)

The crack faces are assumed to have the surface energy density I'(¢) defined by Eq. (1.9), where the
surface strain ¢ is tied to the bulk strain by

e=¢(0)=ep(p£0,0) for —p<OL + . (2.5)

The surfaces are therefore under the action of a prestress of magnitude X,. It is termed a stress, but its
dimension is only force per length. While there is no uniformity in the nomenclature for the quantities I'y
and X, we refer to them as the surface tension and surface stress, respectively. For liquids X is zero and the
surface energy is just the surface tension, a commonly accepted terminology. Since the crack is circular, the
prestressed crack surface, considered as a free body, is under the action of two end forces, each of mag-
nitude 2%y, and a distributed surface load of magnitude X,/p on each of the two sheets of circular surfaces
(Fig. 1b). Thus for the bulk material (without the surface), the surface traction is just the opposite of what is
indicated on the free body of the surface (Fig. 1b).

2.2. Elastic deformation of the bulk

Let (u,, €., 7,) denote the desired solution of the bulk elastic medium (without the surface). The so-
lution satisfies the boundary conditions

Trr(Ry 0) = Gr‘r(0)> Tr()(Ra 6) = Gr()(e)y (26)
T,.(p£0,0)=+2/p, 7T0(p£0,0)=0 for —¢p <O + ¢, (2.7)
tensile point load 2%, at (p, £ ¢), (2.8)

where 0,,.(0) and a,4(0) are defined by Egs. (2.2) and (2.3). For the purpose of convenience, the above elastic
field can be split into two separate fields as follows:

(05 a) = (2,55, 19) + (w258, 55)), 29)
where

©W(R,0) =0,(0), 5 (R,0)=0,(0), (2.10)

©(p£0,0) =7 (p£0,0)=0 for —$p<O< + ¢, (2.11)
and

©(R,0) =0, 8(R,0)=0, (2.12)

W(p+0,0)=+Zo/p, T (p0,0)=0 for —p<O< +4, (2.13)

tensile point load 22, at (p, &+ ¢). (2.14)

It is clear that Egs. (2.10) and (2.11) are the boundary conditions of an ordinary crack problem in the sense
that Griffith solution (modified for circular-arc cracks) is recovered as R tends to infinity. The conditions
(2.12)—(2.14) represent the effect of surface stress. We proceed to calculate the energies of the three elastic
fields defined by Eq. (2.9).
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For plane elasticity, the stress—strain relations and the strain energy density W may be conveniently
written in terms of u and k of Eq. (1.7). They are

K .
Top = 2u |:81/; + 2(K7—1) ()“ﬁew] s (215)

3—x
W (&) = [Mﬁmsﬁﬁ + Saﬁsaﬁ} ; (2.16)
where J,5 is the Kronecker delta. The elastic energies are defined as follows:
Ue = / W (eys)dA
R 2n

45 [ 100 (R.0) + 0O R, 00 — 5 (22l 8) — (.~ )

2 Jo

1 [T 2,

2 — P

R 2n
U = / w(ey)aa =2 /0 [0 (0 (R, 0) + 010 0)u (R, )], (2.18)
s) — (s)
Us = / w (el )dd
! (s (s L[ 20 ©
= =5 2%0) [uf (0, ) — (0, - 9)] — 5 , 5 W00 +ulp-0.0]pd0. 219

Since the displacement at the point of application of a point load is logarithmically singular, the uy(p, £¢)
terms are actually infinite. Also, as R tends to infinity, Eq. (2.18) and the first term of Eq. (2.17) tend to
infinity like R?. These infinite energies, however, do not contribute to the configurational equilibrium of the
crack. Substituting Eq. (2.9) into Eq. (2.17) and applying Egs. (2.18) and (2.19), we get

U= U +UY + U, (2.20)

where U{®® may be called the elastic interaction energy between the o- and the s-system. It has the form

+¢
UL = —X[up(p, ¢) — ug(p, — ¢)] — % / [ (p +0,0) +u (p —0,0)]do +§
-¢
2n
x / [0 (O (R, 0) + 6,0(0)u (R, 0)] o (2.21)
0
or
+¢
Ue(os) _ _220[u()(p’ ¢) . u()(p’ . d))] o ZO/ [uﬁo)(p + (), 6) + u£0)(p — 07 0)} d@, (222)
-¢

where the last equality follows from the reciprocal theorem of Betti and Rayleigh. The second integral of
Eq. (2.21) is not convenient to use because u® and u(gs) must be solved for finite R to the accuracy of (p/R)’
(Sih and Liebowitz, 1967).
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2.3. Potential energy of the bulk-surface system

The potential energy I for the system of Fig. 1a is

n=u.+U,—V, (2.23)

where
+¢
U, = / W (&45)d4, Us = Zp/ I'(e)do, (2.24)
-
and
2n
V= R/ [6,-(0)u,.(R,0) + 6,4(0)uy(R, 0)]dO (2.25)
0

is the potential associated with the remote loading. Using Egs. (1.9) and (2.5), we obtain from the second
part of Eq. (2.24) the total surface energy

+¢
Us = 4p¢F0 + 220[“9(/)’ ¢) - ng(p, - d))] + Z‘0 / [ur(p + 07 9) + ur(p - Oa 9)]d9 (226)
-¢
Substituting Egs. (2.20), (2.25), (2.26) into Eq. (2.23) and applying Eqgs. (2.17)—(2.19), we finally obtain
I =-U% —UY — U +4pgr. (2.27)

According to Eq. (2.20), the above equation is simply II = —U. + 4p¢Iy. It should be noted, however, that
neither 4p¢Ty is the total surface energy, nor —U, the total potential associated with the total elastic field
(cf. Egs. (2.25) and (2.26)). It is now necessary to find the two solutions governed by Egs. (2.10)—(2.14) for
R = o0.

3. Circular-arc crack under biaxial tension

3.1. Complex formulation

In terms of the complex variable z = x| + ix,, the following relations hold (England, 1971; Wu, 1994):

2u(uy + iug)e’ = kW (z) — W(%z) + (%2—2)1/1/’(2)+f<%2>, (3.1)
T + it = W'(2) +’Z);W’<p;> + (1 5;) [W—ZW] Zf’(i), (3.2)

where W and f are holomorphic functions on the z-plane with cuts along the circle » = p. The function f'is
actually the result of an analytic continuation defined in terms of W and another holomorphic function w,
Viz.

z

f(Z)=W(Z)—zW’(p;> —w(p_z) (3.3)

Some of the solution properties are more conveniently expressed in terms of W and w, instead of f. For
example, the properties for large |z| are given by
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W(z) = Wiz + W,1§+---, (3.4)

w(z) :wlz—l—w_lé—i—---, (3.9)
where

W =4=Xon+on), (3.6)

wy=C+1iD = %(022 —oy1) +iopy, (3.7

and g, are the constant stresses at infinity.
For the crack defined by Eq. (2.1), the traction boundary conditions, expressed in terms of W and f, are

== (5 -1 Fi(th - 1), (3.8)

W =)+ W =) = (xh+ 1) +i(th + 1), (3.9)
where F*(p,0) = F(p +0,0) for (—$ <0< + ¢). The function f'(z) has a pole of second order at the
origin,

flay=c2 1. asz o0, (3.10)
z

and tends to a constant for large |z], i.e.

f(z)=24—=W'(0)+--- as z — oc. (3.11)

3.2. The solution (u?), &,

This elastic field is governed by the boundary conditions Egs. (2.10) and (2.11) for R = oo. Let f©)(z)
and W) (z) denote the solution. The traction-free condition, together with Eqgs. (3.4)(3.11), gives

fOz)=(4-Q)z— cp;, (3.12)

2O(2) — fO(2) = (A +O- cg)X(z), (3.13)
where

X(2) =[(z—20)(z—32)]" 2z = pe'?, (3.14)

Q= Ww©'(0) = [44(1 + cos¢) + C sin2¢] /2(3 — cos ¢). (3.15)

This is the circular-arc crack solution in its most condensed form (cf. Cotterell and Rice, 1980).
The SIFs at z = z, = pe', denoted by K(° and K", are conveniently defined by

. . - o 1 0pn — 0 3 — cos
K — iKY = (npsin ¢)'/2e 192 | 21 ton 02— 0 ( ¢

4 .
3—cos¢ 2 2 3—cos¢+lsm¢>} (3.16)

Setting psin ¢ = a and ¢ = 0 in the above, we obtain K\°' — 1KI<I°> = g11+/Ta, as it should be.
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The displacement along the crack periphery is obtained by

o 1,0 * K+ 1 o o —i
[ui (p,0) +iuy (p,0)| = — o (o) — o] e
k+1 —~i0 —i207 yF (a0 —~i20
= {[(4+ Q)™ — Ce™|XT (pe) — [(4 — Q) — Ce ™]p}.  (3.17)
It follows from the above that
0 o K+ 1 .
uy (p, #) =" (p, = ¢) = %c sin 2¢), (3.18)
+1p 44(1 — cos ¢) — Csin* ¢
9 (p+0,0) + 1 (p—0,0) = "IV ¢ cog2 : 3.19
Thus, the elastic interaction energy defined by Eq. (2.22) becomes
.2
(0s) _ _(K+1)on 44(1 — cos ¢p) — Csin" ¢ 5
U, o C+ 3= cos 9) o|. (3.20)

We proceed to calculate U®). This elastic energy is defined by Eq. (2.18) and may be written as the sum of
two terms, viz.

Ul = U§ + AU, (3.21)
where
o TR?
e(0> :@ |:(K— 1)(011 -|—O'22)2+2(O'11 —022)2] (322)

is the energy of the solid without the crack. In order to obtain AU by applying Eq. (2.18), u’® must be
solved for finite R. Our solution (3.12)—(3.19) are for R = co. However, AU® may also be obtained from
another formula (Sih and Liebowitz, 1968; Wu, 1978a,b). It is

1
AUgO) = — TC(Kz:; >R€<VV1W_1 + W—1W1>7 (323)
where the four coefficients are defined by Eqgs. (3.4)—(3.7) and
44(1 — cos ¢p) — Csin® ¢

=—p° 3.24
et (3.24)
W= —p| S(1= cos ) — 4 i’ ,__sin'g (3.25)

TR cos 3—cos¢ 8(3 —cos ) |’ '

Substituting the above into Eq. (3.23), we obtain
+1) 4(1 — cos ¢) 2sin® ¢ 1 sin* ¢
Ay = 2 A AC+ |=(1— - P el (3.6
¢ 2u P 3 — cos¢ 3—cos¢ * 2( cos ¢) 8(3 — cos ¢) ( )
It can be verified by a direct but tedious differentiation that

1 dAUL) k417,02 o

as it should be.
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3.3. The solution (ué”,sfﬁ),risﬁ))

This elastic field is governed by the boundary conditions (2.12)—(2.14) for R = co. Let W®)(z), w®¥(z) and
f9(z) be the complex functions associated with the desired solution. The elastic field associated with a
crack-tip point load is known (England, 1971). For the 2%, force at z = z, the three functions must tend to
Wi(z), wi(z) and fi(z) as z — z;, where

F
Wi(z) = — an In(z — zp), (3.28)
F F Z
WI(Z)_ﬁln(Z_ZO)d‘_&Z_ZO? (329)

and F = 2%(sin ¢p —1icos ¢). The functions must also tend to W5(z), wa(z) and f>(z) as z — Z,, where

F
Wi(z) = —ﬁln(z—zo), (3.30)
F F Zy
= — l —Z —_— . . 1

wa(2) 4r n(z ZO)+4nszO (3:31)

The associated fi(z) and f>(z) may be deduced by applying Eq. (3.3). They are
, o F 220 Zy
fie) = 4nizy {1 zZ—2z + z } ’ (3.32)
o F 2Z, Z
f(z) = P {1 p— + . } . (3.33)
The traction conditions (2.13) are satisfied by
FO O =23 /p, (3.34)
n _

(2w =)+ (2w —s) =0, (3.35)
For large ||,

W) = of X 3.36

()=0(). (3:36)

FY(z) = =W (0), (3.37)
and £ has no pole at the origin. It is now convenient to obtain the solution in the following form:

WO = Wi(z) + Wi(z) + Wo(2), (3.38)

W = wy(2) + wa(2) + wo(z2), (3.39)

¥ = 1(2) + f2) + fol2)- (3.40)

Making all the necessary substitutions, we obtain from Egs. (3.34) and (3.35)
o =Sy =220/p, (3.41)
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L . - 2Zpsing 1
QW — 1)+ 2wy — £7) =—°n ? o (3.42)
where { = pel’. It may also be deduced from Egs. (3.36) and (3.37) that
, Zosin ¢ 1
Wo(z) =———_+, (3.43)
2 si —
£y =20 4 (3.44)

for large |z|. The requirement that /' (z) has no pole at z = 0 leads to the condition that f;(z) actually has a
simple pole, viz.
2 sin ¢ 1

fol2) = — asz—0. (3.45)

It follows from Egs. (3.41)—(3.45) that

; _20 z—2Z Zosil’ld)l
fO(Z) - chp lnz — 2 - z QO7 (346)

W)~ ) = 2 o) (347)
where
i 220¢
2 =TH0) =~y (3.48)

The SIFs are determined from the function X'(z) of Eq. (3.47). Let Kl(s) and Kl(f ) denote the SIFs at z = z.
We have

. 2o sin ¢\ /2 o ..
K® _ig® — _ 0 r_ ). 3.49
I o = sinZ% TCp cos 5 —isin 3 (3.49)
Finally, integrating Eqs. (3.46) and (3.47) and using Eqgs. (3.38)—(3.40), we get
iZ 2%y .
=202y (z) - 220 o) .
f(2) - (2) == sin ¢ — oz, (3.50)
1) 2o . 1
W(z) = 2 z¥(z) — sin ¢ 3 Qolz — X(2)], (3.51)
where
- zZ— 2y
Y(z)=1 P (3.52)

The displacement along the crack periphery may now be calculated from Egs. (3.1), (3.50)—(3.52). It is



C.H. Wu, M.L. Wang | International Journal of Solids and Structures 38 (2001) 4279-4292 4289

1
(u, + iug)* = Ze*“’(KWi - W74 f7)

k=12 (k+1)X . ¢(1 — cos ¢) o .
=+ -2 0———— = 2 0+ Iné
an + P sin ¢ cos (3= cos ) +1[2 sin ¢ sin 0 + InJ]
2¢ 4 i0
- X"e™ 3.53
p(B—cosd) } (3:53)
where § = |z — zy|/|z — Zy| and the property of Y* has been used. It is also noted that X~ = —X ', so that

they do not contribute to the value of U®, Eq. (2.19). Applying the previous result, we obtain from Eq.
(2.19)

2

g — D20 s A, (3.54)
2 —

AUe(s) _ (K + 1)20 (1 cos d)) (z)z’ (355)

2nu (3 — cos ¢)

where Indy indicates the logarithmic singularity when z tends to z, or Z.
It is now possible to compare Eq. (3.55) with Eq. (3.26) to obtain

AUP JAUP o (Zo/oap)’, (3.56)

where o, indicates the magnitude of an applied stress. Since o3 7p sin ¢ o< Ki- = 16l /(k + 1), the sig-
nificance of AUY, relative to that of AU/, is controlled by the factor defined by

AUY 5\’ ) . [(Z\/Z

o (—0) mmsmqﬁ(—o) (—0>, (3.57)
AU TAP 16 Iy )\ pu
which indicates that p has to be small in order for the last ratio to be of significance. Differentiating Eq.
(3.55), we obtain

1 0AUY Kk +1
2 0 8u

which indicates that the energy release rate is not proportional to the sum of squares of KI(S) and KI(IS), a
consequence of the point load at the crack tips, Eq. (2.8).

} (k+ 1)Z}¢ sin® & (3.58)

{K@)z LK) &
! " 2npp(1 + sin® £)”

3.4. The potential energy of the bulk-surface system

This is the function IT given by Eq. (2.27). With respect to Egs. (2.20), (3.21) and (3.54), II may be
written as

1= Iy + Al (3.59)

AIl = —AU®) — AU — AU + 4poTy, (3.60)

where I, is independent of the crack-configuration parameters p and ¢. The function AIT owes its existence
to p and ¢. It may therefore be referred to as a configurational energy. The configurational equilibrium of a
system is determined by the stationary of its configurational energy. We examine the stationary charac-
teristics of Eq. (3.60) for the case g, = g5, = 0.
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The stress intensity factors for g;; = g2, = ¢ are first calculated from Egs. (3.16) and (3.49). They are

K=K + K = ( Z°¢) Vmpsing o9 (3.61)

l—i-sm“5 2’

1+sin2% 2’

o s z \/Tpsin¢g .
KH:KI(I)—FKI(I):(J—;d))M ¢ (3.62)

where X signifies the surface-stress contribution. For convenience, we also define K and K(© by

2
K* =K} +K} = <a—in¢> npsin¢/(1+51n2¢) , (3.63)

KO = KI<°>2 4—1(1(1")2 = ¢’np sin d)/( + sin’ d)) (3.64)

The associated configurational energy is now obtained by substituting Egs. (2.20), (3.26) and (3.55) into Eq.
(3.59), viz.

B (k+1) (1 - cos¢) o\’
AIl = 4p¢Ty — 5 (G cosd) (ﬁap—%) . (3.65)

By setting to zero the derivative 0AII/2p0¢, we obtain the configurational equilibrium condition for the
circularly extending circular-arc crack. The condition is

45
g Aoy K2 =0, (3.66)

\/Ttp sin ¢

where Kjc is the constant defined by Eq. (1.8). It follows from Egs. (3.63), (3.64) and (3.66) that
KO > K > K7, (3.67)

where equalities hold only if X, = 0. Thus, the inclusion of surface stress is to increase the apparent
toughness of the material. In terms of the applied o, Eq. (3.66) may be solved to yield

. ) ¢> 220 sin’ (1 + sin ¢) Zo¢ sin q,’)
ov/mpsing ~ 1+ sin’ = |K o 3.68
psing ( 2 Jhet \/Tp sin ¢ s/Tl',p sin ¢ (3.68)

which may be compared with Eq. (1.11).

4. Summary

The fully nonlinear surface chemical potential for elastic solids undergoing surface accretion — as de-
lineated by Leo and Sekerka (1989), Wu (1996), Freund (1998) and Norris (1998) — is now well established.
The coupling between the ‘surface’ and the bulk material is, in general, highly nonlinear, and experimental
values for solid surface stress are mostly unavailable. However, there is a special case of the general
chemical potential, which makes use of the simplicity of the Laplace-Herring model of Grinfeld (1994). It
corresponds to the linear surface energy density of Eq. (1.9). This choice, together with the use of linear
elasticity for the bulk material, enables us to remove the coupling from the nonlinear problem in that the
inclusion of a surface stress is but the addition of another load, which may be separately considered for its
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contribution to the total deformation. The desired coupling is only entwined in the energy — as is typical of
all linear problems — and the result is a modified configurational equilibrium condition. Also, the single
constant surface-stress coefficient can be easily carried along the analysis as a parameter. The goal of this
work and that of Wu and Wang (2000) is to take advantage of this described simplification to examine the
implication of surface stress on stress intensity factors and, above all, on configurational equilibrium
conditions.

It is shown that for linear cracks the inclusion of surface stress does not change the values of the stress
intensity factors, although the stress field around a crack tip actually becomes more singular than an inverse
square root singularity. There is no inconsistency in this result, as the configurational equilibrium is always
an energy condition and never a stress criterion. Indeed, the calculated configurational equilibrium is af-
fected by the presence of surface stress, and the explicit result conveyed by Egs. (1.10) and (1.11) attest to
this conclusion.

For curvilinear cracks, the presumably traction-free crack surfaces are now loaded by a uniformly
distributed compression on the convex side and a uniformly distributed tension on the concave side. This
additional load alters the values of the stress intensity factors, as well as the configurational equilibrium
conditions. Egs. (3.60) and (3.61) indicate the change in stress intensity factors, and Eq. (3.68) expresses the
explicit change in terms of energy.

In general, numerical or finite-element based techniques may be applied to compute the modified stress
intensity factors. However, if the configurational equilibrium condition — i.e. the fracture criterion — is not a
known function of the stress intensity factors, there is really no apparent need to calculate them. As to the
numerical determination of the problem-specific configurational equilibrium condition, it is still a very
much open question.

It all comes down to the question of whether the inclusion of surface stress is to affect the solution in any
significant way. Without the availability of a truly nonlinear solution, the best estimation we can have is
(3.57), which indicates a second order effect strongly influenced by the value of the surface stress coefficient.
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